IJESRT-INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

CRACKING OF PALM OIL TO PRODUCE OLEOCHEMICALS Nwokedi I.C., Ude, C.N.* ,Okoye, C.C., Okey-Onyesolu, C.F.

^aDepartment of Chemical Engineering, Nnamdi Azikiwe University, P.M.B. 5025, Awka, Anambra State, Nigeria. ^bProjects Development Institute (PRODA), Enugu, Nigeria.

ABSTRACT

The FTIR and GC-MS tests are necessary for identification of oleochemicals produced via cracking. In this research, thermal cracking (without catalyst) and catalytic cracking of palm oil were carried out in a batch reactor. The thermal cracking was performed at temperatures of 700°C to 900°C at a time of 30 to 150 minutes while the catalytic cracking was done at temperatures of 100°C to 400°C, time of 30 to 150 minutes and catalyst weight of 10 to 50 grams. The evaluation of products involved FTIR, GC-MS, and Effects of process parameters (Temperature, Time and catalyst weight) on acid value, density and kinematic viscosity. Viscosity, acid value and density of the liquid condensates fall within the accepted limit of the oleochemical standard, and this showed that triglyceride molecules in the palm oil were broken down to light molecules. The research also showed that Catalytic cracking of palm oil (at a much lower temperature levels) with the aid of clay catalyst yielded better oleochemicals to that obtained from thermal cracking of oil at a very high temperature. This work showed that it is a good process that can be used industrially in obtaining oleochemicals that can serve for different purposes.

KEYWORD: Fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography-Mass spectrometry (GC-MS), oleochemicals, palm oil, catalytic and thermal cracking

INTRODUCTION

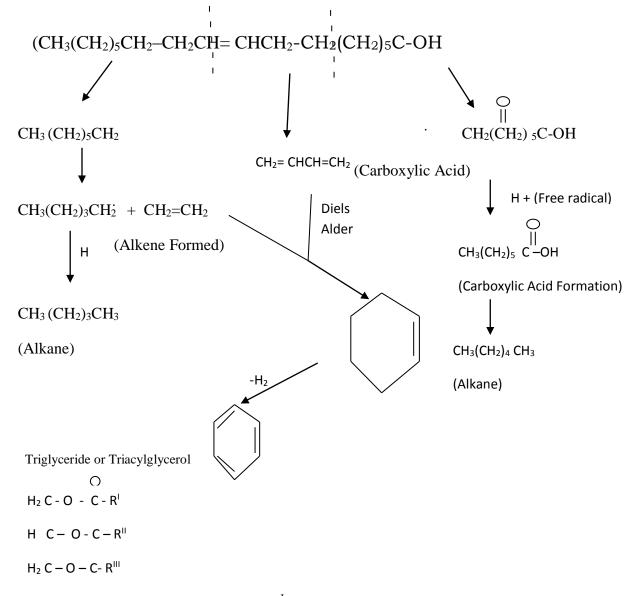
One of the alternative fuels currently being studied is biofuels and chemical intermediates (Oleochemicals) obtained from vegetable oil. Liquid biofuel obtained from vegetable oil, is renewable and also free of nitrogen and Sulphur compound as compared with fossil fuel [1]. Among all of the Vegetable oils, palm oil is one of the vegetable oil that has the greatest possibility to be used in bio fuel production because of its abundance in nature. Oleochemicals are chemicals derived from oils and fats [2]. They are analogous to petrochemicals which are chemicals derived from petroleum [3]. Oleochemicals or derivatives based on C12-C14 and C16-C18 chain lengths have a variety of uses. Tallow and coconut oil have been the traditional raw materials used for the production of C16-C18 and C12-C14 chain lengths respectively [4]. The hydrolysis or alcoholysis of oils and fats formed the basis of the Oleochemicals industry. The five basic Oleochemicals are Fatty acids, Fatty Methyl esters and Ethyl esters, fatty alcohol, fatty nitrogen compounds and glycerol [5]. The process of derivation or obtaining these chemical intermediates from palm oil requires high temperature pyrolysis, alcoholysis, gasification or destructive distillation in the presence of a catalyst. Activated clay has been used extensively for over 60 years as catalyst for bleaching of palm oil [4]. Therefore, this study intends to crack palm oil using thermal cum acid activated clay.

2.0 Mechanism for the Cracking of Palm Oil: 2.1 Reaction pathways for triglyceride cracking in palm oil

Thermal decomposition of triglycerides produces compounds of classes including alkane, alkenes, alkadienes, aromatics and carboxylic acids. Thermal decomposition of its structures proceeds through either free-radical or carbonium ion mechanism as shown below:

i) Formation of alkanes, alkenes, fuel gases (CO, CO_2, H_2) is by the generation of the

```
http://www.ijesrt.com
```

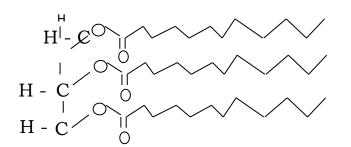


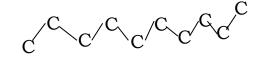
RCOO radical from the triglyceride cleavage and subsequent loss of carbon (iv) oxides isomerisation results in formation of C_5 to C_{10} alkanes

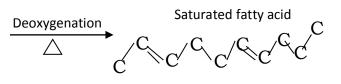
ii) Formation of aromatics is supported by a Diels-Alder addition of ethylene to a

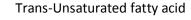
conjugated diene formed in the pyrolysis reaction.

 Carboxylic acids formed during the pyrolysis of vegetable oils probably result from cleavage of the glyceride moiety.





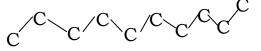

A) Deoxygenation and Cracking:


This involves the splitting of the carbon attached with the oxygen atom bonding it to form aliphatic hydrocarbons (e.g. Alkane were oxygen atom is replaced by H^+ as a result of heating the triglyceride

molecule. The effect of deoxygenation also leads to the formation of alkanones (Ketone) which is as a result of electromeric effect involves sharing of electrons from one atom to another joined by a double or triple bond.

Cis-Unsaturated fatty acid + 30₂

At this Stage the Saturated Fatty Acid will Result in the Formation of Paraffin (an Alkane).

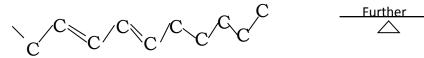

Alkane (paraffin) + $C0_2$ + H_20

B) Secondary cracking and Deoxygenation:

Further cracking here results in the formation of aliphatic hydrocarbons of 2 to 10 carbons (ethane, propane, pentane, Hexane, butane, heptane)

$$C^{C} C^{C} C^{C$$

ii. The Breakdown of the Unsaturated Fatty Acid (Trans-Unsaturated Fatty Acid)



Ç

С

(Trans-unsaturated fatty acid)

i.

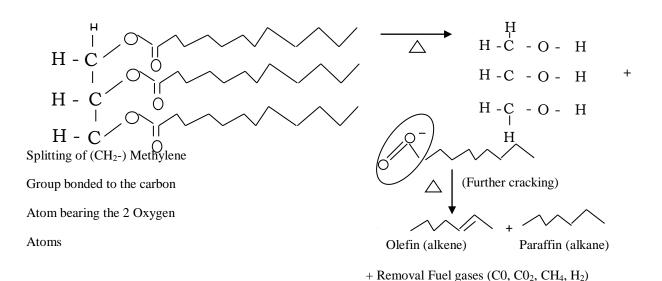
iii.

The Breakdown of the Unsaturated Fatty

Acid (cis-Unsaturated fatty acid).

+ $CO + H_2O + CH_4$

Cis-unsaturated fatty acid


http://www.ijesrt.com

© International Journal of Engineering Sciences & Research Technology

ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785

iv Formation of Alcohol:

The triglyceride molecule has a tendency of forming water triglyceride as a result of the presence of the hydroxyl-OH group and the hydrogen covalently bonded to the carbon. This is by a process called hydrolysis which can occur during the heating of the triglyceride resulting in the formation of a free fatty acid and glycerol.

C. Oligomerization: This is the process of converting a monomer or a mixture of monomers to macromolecular complexes. This process results in the formation of olefins (called alkene) and paraffins (an alkane) as stated previously the splitting of the unsaturated and saturated fatty acids to formation of hydrocarbons of 2 to 10 carbons.

Before aromatization can occur Isomerization must have taken place. Isomerization is the arrangement of straight chain hydrocarbons to branched hydrocarbon, unsaturation leads to branching and formation of cyclic compound(s), this occurs as a result of breakdown of the Cis-and trans-fatty acid (which are unsaturated) yield of hydrocarbon of 2 to 10 carbons of which cyclohexane is formed.

D. Aromatization:

i. Formation of Aromatic compound from an alkane (cycloalkane) by dehydrogenation.

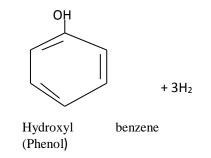
• Branching

 $CH_3(CH_2)_4CH_3$

Hexane

CH₃ – CH (CH₂)₂ CH₃ | CH₃

2 - Methyl pentane

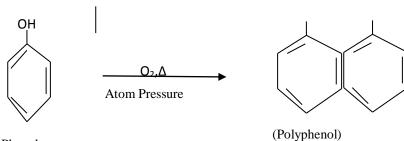

http://www.ijesrt.com

Hydroxyl cyclohexane

ii. Alkylation:

The combination of alkene and alkane (olefin and paraffin) as cracking continues results in the

combination of the two aliphatic hydrocarbons to form a long chain hydrocarbon.


E. Polymerization:

vegetable oil or petroleum.

When an alkane, alkene and Aromatic compound is heated with traces of oxygen or peroxide, a compound of higher molecular weight is obtained.

This is basically fuels with impurities and high

carbon content obtained during a cracking process of

Phenol

F. Coke:

MATERIALS AND METHODS

Raw material:

The raw material was purchased from the market; the palm oil obtained underwent degumming in order to remove particulate matter in form of impurities, followed by dehydration for removal of water. It was then characterized to check for its physio-chemical properties before it was used for cracking and was compared with ASTM standards with the results shown in Table 1.

Preparation of catalyst:

The clay catalyst used as an adsorbent underwent carbonization at a temperature of 500° C for 5 hours after which it was activated with sulphuric acid. Characterization of the clay sample is done to check for its physical and chemical properties, as well as the ability of the clay to act as adsorbent.

Cracking of the Palm Oil:

A known volume of palm oil was measured and placed in flat bottom flask in a rotary evaporator. It was then heated to a certain temperature for a particular time. The solution was allowed to settle for 30 minutes and separated to obtain the oleochemical. Then the yield of oleochemical was calculated using the equation below:

Yield of oleochemical,
$$Y = \frac{weight of oleochemical produced}{weight of palm oil} x 100$$
 (1)

http://www.ijesrt.com

The production of oleochemicals from palm oil cracking was optimized using Central composite design (response surface methodology) to determine the optimum values of the process variables. To examine catalytic cracking of palm oil the combined effect of the three different factors (independent variables): temperature, time and catalyst weight were used to develop experimental design to study their effect on the yield of oleochemicals production. The experiments were performed in random order to avoid systematic error.

RESULTS AND DISCUSSION

Characterization of raw palm oil

The physicochemical properties of raw palm oil were shown in Table 1. From the table, it could be seen that the palm oil met the ASTM standard and can be converted to oleochemical without treatment because of its low free fatty acid.

Parameters	Concentration	ASTM standard
Acid value (g KOH/g %)	0.36	0.8max.
Saponification value (%)	65.92	62.31
Free fatty acid (%)	0.18	0.5
Peroxide value (mleq/kg)	25.25	40.31
Specific gravity	0.92	0.875-0.95
Bulk density (g/ml)	1.064	0.875-1.0
Cloud point(⁰ C)	65	69
Pour point(⁰ C)	95	93
Flash point(⁰ C)	98	95
Viscosity (pa.s)	8.46	7.5-8.5

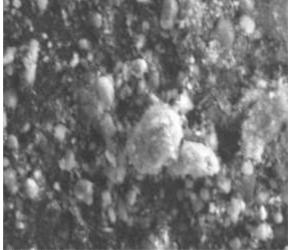
Table 1: Characterisation result of raw palm oil as compared to ASTM standard

Charaterization of clay

Table 2: Characterisation result of the raw and activated clay

Parameter/Adsorbents	RAW	ACTIVATED
Ash content (%)	10.05	7.51
Bulk density (g/cm ³)	0.83	0.59
Moisture content (%)	5.00	2.00
Volatile matter (%)	5.50	3.20

From Table 2, the raw clay has higher value of ash content, bulk density, moisture content and volatile matter. Raw clay has higher value of ash and volatile content than activated clay because carbonization quickly destroys the useless mineral substances in the carbon during activation. Also heating reduces the moisture build up in the activated clay. The lower % yield observed for the activated clay could be because of the heat destroying the aliphatic and aromatic species present in the substrate and hence removing the volatile matter during the significant removal of organic by products and minerals present in the activated carbon surface during activation.


Scanning Electron Microscopy analysis

The surface morphology of the clay without activation and that with activation is measured with the help of SEM and is presented in the Figures 1 and.2. It is clearly observed that the surface of the clay in Fig. 2 has been changed into new shiny bulk particles and whitish patches structure after activation which shows that the carbonization

[Nwokedi, 4(7): July, 2015]

ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785

creates higher surface area and pore structure. It is therefore observed that activation of clay improved the adsorptive sites on the surface of clay.

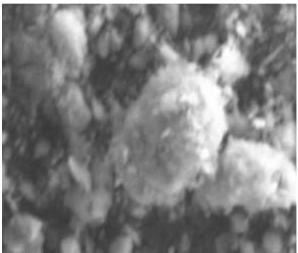


Figure 1: SEM result of raw clay sample

Figure. 2: SEM result of the activated clay sample

X-Ray Fluorescence analysis

The XRF characterization was performed to know the chemical compositions of the minerals that are present in the clay. The SiO₂ and Al₂O₃ are the key minerals that are responsible for the strength of the clay in acting as an adsorbent, which makes it function as a catalyst. It is seen from the table below that the percentage composition of the minerals (with exception of TiO₂ and NiO) increased after activation which indicates that chemical activation of clay promotes the minerals present in the clay. This confirms the chemical analysis of the clay sample.

Chemical Constituents	Raw Clay (%)	Activated Clay (%)
Al ₂ O ₃	34.80	35.70
SiO ₂	41.90	43.00
K ₂ O	2.95	3.05
CaO	0.72	0.85
TiO ₂	3.78	1.81
V ₂ O ₅	0.15	0.17
Cr ₂ O ₃	0.10	0.10
MnO	1.02	1.08
Fe ₂ O ₃	12.08	14.00
NiO	2.43	0.23

Table 3: XRF rest	lt of the raw and activate	d clay samples

Effect of process parameters on oleochemical production

 Table 4: Design of Experiment using Response Surface Methodology: Thermal Cracking of palm oil (without catalyst)Temperature: 700 – 900°C, Time: 30 - 150 Minutes

S/NO	TEMP (^o C)	TIME (MINS)	YIELD (%)	KINEMATIC VISCOSITY (Pa.S)	DENSITY (g/cm ³)	ACID VALUE (mg NaOH/g)
1	700	30	84	3.44	0.80	0.08
2	900	30	85	3.85	0.77	0.15
3	700	150	82	4.38	0.81	0.08
4	900	150	84	4.32	0.97	0.09
5	658.58	90	81	6.78	0.74	0.14
6	941.42	90	82	4.24	0.86	0.33
7	800	5.15	88	4.85	0.85	0.09
8	800	174.85	85	3.48	0.78	0.16
9	800	90	86	2.37	0.76	0.12
10	800	90	87	3.58	0.86	0.19
11	800	90	89	3.23	0.82	0.23
12	800	90	87	3.19	0.85	0.18
13	800	90	86	3.183	0.83	0.19

Table 5: Design of experiment using response surface methodology: catalytic cracking of palm oil temperature: $100 - 400^{\circ}c$, time: 30 - 150 mins, catayst: 10 - 50 grams

S/NO	TEMP	TIME (MINS)	CATALYST	YIELD	KINEMATIC	DENSITY	ACID
	(⁰ C)		(GRAMS)	(%)	VISCOSITY	(g/cm^3)	VALUE
					(Pa.S)		(mg NaOH/g)
1	400	150	10	84	2.499	0.88	0.22
2	400	30	50	85	1.891	0.86	0.18
3	100	150	50	85	2.555	0.78	0.20
4	100	30	10	89	2.139	0.74	0.15
5	37.87	90	30	85	1.566	0.70	0.19
6	462.13	90	30	84	1.957	0.80	0.21
7	250	5.15	30	87	2.080	0.82	0.26
8	250	174.85	30	87	2.540	0.87	0.17
9	250	90	1.72	90	2.304	0.70	0.16
10	250	90	58.28	89	2.923	0.90	0.18
11	250	90	30	89	2.068	0.86	0.14
12	250	90	30	90	2.592	0.87	0.15
13	250	90	30	91	1.887	0.90	0.13
14	250	90	30	90	2.511	0.82	0.23
15	250	90	30	89	2.068	0.86	0.22

ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785

ASTM standard was used to obtain the sample with the best yield and most suitable condition based on the results of the dependent variables being studied such as Kinematic Viscosity, Density and Acid Value. From the different runs it is seen that sample 10(from the thermal cracking in Table 4) and sample

12 (from the catalytic cracking in Table 5) gave the best yield when compared to standard in Table 6. These samples are now subjected to machine test analysis (FTIR and GS-MS) in other to determine the oleochemicals present.

Standards for oleochemicals ASTM D-6751 IS 15607 : 2005 860 - 900 g / cm³ Density $0.86 - 0.90 \text{ g/cm}^3$ Ester Content 96.5 % Not Mentioned 120°C Flash point (closed cup) 130°C min. (150°C average) Water and sediment 0.050% by vol., max. 500 mg / Kg, max. $1.9-6.0 \text{ mm}^2/\text{s}$ $2.5-6.0 \text{ mm}^2/\text{s}$ Kinematic viscosity at 40°C Not Mentioned 6 hours min, at 110°C **Oxidation Stability** Cetane Number 47 min. 51 min. Carbon residue 0.050% by mass, max. Acid number, mg KOH/g 0.80 max. 0.50 max. Methanol or Ethanol Not Mentioned 0.2 % m/m, max Free glycerin 0.020 % mass 0.020 % mass Total glycerine (free glycerine and unconverted 0.24% by mass, max. 0.25% by mass, max. glycerides combined)

5 mg/Kg, max Not Mentioned

0.001 max. % mass

Table 6: US and Indian stazdards for oleochemicals

Witchakorn and Vitidsant (2003), [9].

5 mg/Kg, max

5 mg/Kg, max

10 mg/Kg, max

Tests and Results of FTIR Spectra analysis

Group I Metal (Na+K)

Phosphorus content

Group II Metal (Ca+Mg)

FTIR analysis of the palm was done to predict the functional groups and hydrocarbons of both the raw palm oil sample before cracking, and that for the thermal and catalytic cracking optimum process conditions. The samples selected for the FTIR and GC-MS tests are the samples whose dependent variables such as kinematic viscosity, density and acid values conforms best to the biodiesel standard used as a bench mark in this work. The profiles by FTIR spectroscopy for raw palm oil, thermal and catalytic cracked oil samples are shown in Tables 7, 8 and 9 and in Figures 2, 3 and 4. From Table 7, 8 and 9 and Figures 3, 4 and 5, the FTIR spectra of thermal and catalytic processes indicated the presence of carbonyl compounds (Alkane C-H, Alkene C-H, Aldehyde C=O, Ketone C=O, Ester C=O, Carboxylic Acid C=O and Amide C=O stretch) which is one of the strongest IR absorption and is very useful in structure determination of hydroxyl, esters, aliphatic hydrocarbons (alkane, alkene), phenols, carboxyl and anhydrides groups. FTIR spectra of activated carbons wave number (cm⁻¹) increases after activation, from 616.28 to 1257.63 for catalytic cracked oil and from 558.31 to 1195.91 for thermal cracked oil. The peak around 616.28 cm⁻¹ (C-H bond) shifted to higher frequencies 1257.63 cm⁻¹(C-C(O)-C stretch in ester and alcohol, C-C stretch in ketone), also the peak around 588.31 cm⁻¹ (C-CL stretch in alkyl halide) shifted to higher frequencies 1195.91cm⁻¹(C-O Stretch in alcohol). Butzetski et al (2010) reported a similar result. The above changes in the spectra may be attributed to the interaction effect of heat on the triglyceride molecule resulting in different pathways such as deoxygenation, isomerization, polymerization etc.

Wave number (cm ⁻¹)	Bond Source	
558.31	C-CL stretch in alkyl halide	
616.28	C-Cl, C-Br in alkyl halides and C-H bend in alkynes	
872.82	PH bend in phosphine	
1119.71	C-O-C, Alkyl-substituted ether, C=O stretch	
1274.03	O-H, Primary or secondary, OH in-plane bend	
1480.42	C=C stretch in aromatics	
1607.72	N-H bend in amines	
1867.16	Aromatic Combination bands	
2099.59	Transition Metal carbonyl	
2236.54	C=C stretch in alkynes	
2498.86	O-H stretch in carboxylic acids	
2646.42	O-H stretch in carboxylic acids	
2866.32	C-H stretch of alkanes	
3031.23	Medial, cis- or trans-C-H Stretch in alkenes	
3105.5	C=H stretch in alkenes	
3271.38	Hydroxyl group, H-bonded OH stretch	
3437.26	Hydroxyl group, H-bonded OH stretch	
3656.19	O-H Stretch in phenols and alcohols	
3788.32	O-H Stretch in phenols and alcohols	
3962.88	O-H Stretch in phenols and alcohols	

 Table 7: Fourier Transform Infrared Spectrum for raw palm oil

Table 8: Fourier Transform Infrared Spectrum thermal cracked oil

Wave number (cm ⁻¹)	Bond Source	
612.42	C – CL bend In alkyl Halides	
752.26	C- 0 stretch in alcohols	
1195.91	C – O Stretch in alcohol	
1263.42	C-O Stretch in carboxylic acid	
1418.69	C-H in plane bend in alkenes, aromatic phosphate	
1584.57	N – H bend in amines, N-O in nitro compounds	
1873.91	Aromatic Combination Bands	
2261.61	C=N stretch Aliphatic cyanide/nitrile	
3067.88	0 – H stretch in carboxylic acids	
3178.79	O – H stretch in carboxylic acids	
3351.43	N-H stretch in Aliphatic secondary amines	
3394.83	O– H, Normal polymeric O-H stretch	
3409.3	N – H stretch(1 per N-H bond) in amines	
3547.21	O – H, H – bonded OH stretch	
3655.23	O – H stretch in phenols and alcohols	
3832.68	O – H stretch in phenols and alcohols	
3901.16	O - H stretch in phenols and alcohols	

Wave number (cm ⁻¹)	Bond Source	
767.69	C-H bend (mono) in aromatics, methyl	
927.79	Cyclohexane ring vibrations	
1257.63	C - C Stretch in ketone, C-C(O)-C in ester, alcohol	
1320.32	C=C Conjugation stretch in alkenes	
1431.23	Methyl C-H asymmetric bend	
1585.58	C = C-C, Aromatic ring stretch	
1617.37	C- C stretch in alkynes	
1774.7	C– H stretch in alkanes, ester	
1873.91	Aromatic Combination Bands	
2085.12	Transition metal carbonyl	
2566.37	O-H stretch in carboxylic acids, alcohol, phenol	
2677.29	O-H stretch in carboxylic acids, alcohol	
3293.56	O– H, Normal polymeric OH stretch	
3472.95	O – H, Dimeric OH stretch	
3648.48	O – H stretch in phenols and alcohols	
3842.33	O – H stretch in phenols and alcohols	
3959.03	O – H, stretch in phenols and alcohols	

Table 9: Fourier Transform Infrared Spectrum for catalytic cracked oil

GC-MS result analysis

To identify the fatty acid content and quantity of the cracked palm oil, GC-MS analysis were conducted on the raw, catalyzed and thermal cracked palm oil samples. GC-MS analysis was used to identify the Fatty acids present and hydrocarbon content of palm oil before the thermal and catalyzed reaction for comparison. The results of the analysis of the palm oil and cracked palm oil samples are shown in Tables 10, 11 and 12 and Figures 6, 7 and 8. From the images of the GC-MS on palm oil samples, it was observed that heat had a significant effect in the thermal and catalytic cracked oil samples with the increase in the peak as shown in their results whereas for the raw palm oil sample it appears in traces. This showed that the palm oil was cracked resulting in the formation of more useful fatty acids and oleochemicals, however catalytic oil sample gave the best result for the three due to the formation of more fatty acids and hydrocarbons and also the increase in the yield values of the fatty acids and oleochemical products. Also based on the result of GC-MS analysis on the palm oil, there are 8 main fatty acid molecules in the palm oil triglyceride: some having single bond while others having double bond, The catalyst pore or a high temperature was expected at least to be able to crack the double bond in the oleic acids structure of catalyst pore trapped triglyceride because double bonds are easier to be cracked compared to single bonds [1]. Non-saturated molecules are not wanted in fuels because they tend to react with some impurities or even react to each other in a polymerization reaction forming unwanted big molecules. The expected reaction mechanism is illustrated below:

Table 10: Fossible Faily actas/nyarocarbons present and their % weight in raw paim ou			
Hydrocarbon molecule (fatty acids)	Name	%weight	
C ₁₂	Lauric acid	5.71	
C ₁₄	Myristate	50.13	
C ₁₀	Capric acid	1.52	
C ₁₁	Undecyclic acid	10.29	
C _{16:1}	Palmitoleate	4.87	
C _{18:2}	Linoleate	4.37	
C ₁₇	Margaric acid	0.82	
C ₁₈	Methyl stearate	10.16	
C ₉	Dimethyl pentane	4.00	
C ₈	Dimethyl hexanone	1.10	
C ₆	Dimethyl tetrahydrofuran	7.03	

Table 10: Possible Fatty acids/hydrocarbons	present and their % weight in raw palm oil
1 u d l e 10. $1 0 s s l d l e 1 u l y u c l u s/n y u r d c u r d l h y u r d c u s l h y u r d c u r d d l h y u r d c u r d d h y u r d c u r d d h y u r d c u r d d h y u r d c u r d d h y u r d c u r d h y u r d h y$	present and their 70 weight in raw paim ou

ISSN: 2277-9655 (I2OR), Publication Impact Factor: 3.785

Hydrocarbon molecules	Name	%weight
C ₁₀	Capric acid	1.27
C ₁₁	Undecyclic acid	6.49
C ₁₂	Lauric acid	4.00
C _{20:2}	Arachidic acid	12.16
C ₁₄	Myristste	6.59
C _{16:1}	Palmitoleate	25.82
C ₁₇	Magaric acid	3.84
C ₁₈	Ethyl Stearate/Stearic Acid	12.22
C ₂₅	Pentacosylic acid	2.70
C ₃₀	Melissic acid	4.75
C ₁₉	Octadecenoic acid	3.08
C ₆	Nitrohexane	2.12

Table 11: Possible fatty acids	s/hydrocarbon molecules	present and their % wei	ght in thermal cracked	palm oil

Table 12: Possible fatty acids and hydrocarbons present and their % weight in catalytic cracked palm oil

Hydrocarbon molecules	Name	%weight
C ₁₀	Capric acid/Nonanoic acid	1.27
C ₁₁	Undecyclic acid	7.49
C ₁₂	Lauric acid/ Ethyl ester	6.04
C _{18:2}	Linoleic acid	12.13
C ₁₄	Myristste/ Tridecanoic acid	4.59
C _{16:1}	Palmitoleate	19.88
C ₁₇	Magaric acid	4.84
C ₁₈	Stearic Acid	10.21
C ₂₅	Pentacosylic acid	3.70
C ₃₀	Melissic acid	4.75
C ₁₉	Octadecanoic acid methyl ester	3.01
C ₁₃	Dodecanoic acid	7.06
C ₁₅	Tetradecanoic acid Ethyl ester	5.03

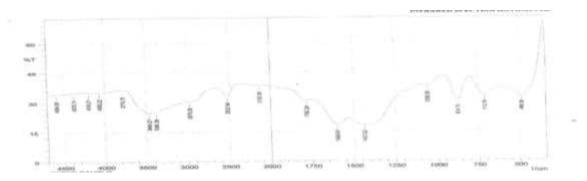


Figure. 3: FTIR Result of the raw palm oil sample

Figure. 4: FTIR result of catalytic cracked palm oil sample (Temp: 250°C, Time: 90mins, Catalyst weight: 30 grams)

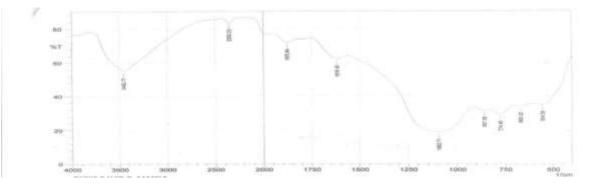


Figure. 5: FTIR result of thermal cracked palm oil sample (Temp: 800°C, Time: 90mins)

Figure. 6: GC-MS result of the raw palm oil sample



Figure. 7: GC-MS result of the thermal cracked palm oil sample

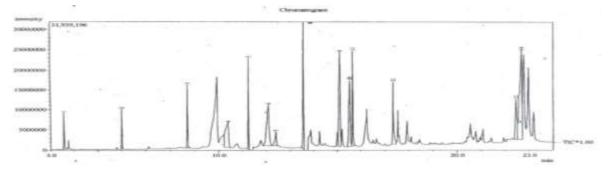


Figure. 8: GC-MS result of the catalytic cracked palm oil sample

CONCLUSION

The evaluation of products involved FTIR, GC-MS, and Effects of process parameters (Temperature, Time and catalyst weight) on acid value, density and kinematic viscosity. Viscosity, acid value and density of the liquid condensates fall within the accepted limit of the oleochemical standard, and this shows that triglyceride molecules in the palm oil were broken down to light molecules. The research also shows that Catalytic cracking of palm oil (at a much lower temperature levels) with the aid of clay catalyst yielded better oleochemicals to that obtained from thermal cracking of oil at a very high temperature. This work also showed that this is a good process that can be used industrially in obtaining oleochemicals.

REFERENCES

- [1] Buzetski, H. and Svanova, B., "Zeolite catalysts in cracking of natural triacylglycerols",44th International Petroleum Conference, Bratislava, Slovak Republic, 2009.
- [2] Adjaye, J.D. and Bakhshi, N.N., "Catalytic Conversion of Biomass-Derived Oil to Fuels and Chemicals I: Model Compound Studies and Reaction Pathways". Biomass and Bioenergy. 8(3): 131-149, 1995a.
- [3] Adjaye, J.D. and Bakhshi, N.N., "Production of Hydrocarbons by Catalytic Upgrading of a Fast Pyrolysis Bio-Oil". Part I: Conversion over Various Catalysts. *Fuel Processing Technology*. 45: 161-183, 1995b.
- [4] Siswanto B.D., "Gasoline production from palm oil via catalytic cracking: Determination of optimum condition", Volume 3, Asian research publishing network (ARPN), 2008.
- [5] Sharma, B.K., "Industrial Chemistry (Including Chemical Engineering), 5th Edition. Goel publishing House, 2006.
- [6] Katikaneni, S.P.R., Adjaye, J.D. and Bakhshi, N.N., "Catalytic Conversion of Canola Oil to Fuels and Chemicals over Various Cracking Catalysts". Canadian Journal of Chemical Engineering, 73: 484-497, 1995.
- [7] Finar I.L., "Organic Chemistry, Vol. 2. Stereochemistry and Chemistry of Natural products, 5th Edition. Pearson Education Ltd, India, 1975.
- [8] Pettrucci R. H., "General chemistry, principles and Modern Applications. The Macmillian Company, U.S.A, 1987.
- [9] Witchakorn, A. and Vitidsant, V., "Kinetic study of used vegetable oil to liquid fuels over sulphated zirconia", Bangkok 10330, Thailand, 2003.

AUTHOR BIBLIOGRAPHY

Nwokedi Ikenna Chukwudi I hail from Enugwu-Ukwu in Njikoka Local Government Area of Anambra State, Nigeria. I studied Pure and Industrial Chemistry as my first degree and proceeded to Post graduate level where I obtained a Post Graduate Diploma and Masters Degree in Chemical Engineering all from Nnamdi Azikiwe University, Awka, Anambra State, Nigeria. I am currently running my Ph.D in Chemical Engineering from the same institution. I work with Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.
UDE Callistus Nonso I am from Obinofia Ndiuno Ezeagu Local Government Area of Enugu State, Nigeria and was born on 27 th September, 1982. I studied Chemical Engineering from Nnamdi Azikiwe University, Awka, Anambra State, Nigeria upto Masters Degree. I am currently running my Ph.D in the same discipline from the same institution. I work with Projects Development Institute, PRODA, Enugu State, Nigeria. I have published several journals.
Okoye, Chukwunonso Chukwuzuloke is a native of Nise in Awka South Local Government Area, Nigeria. I obtained Bachelor of Engineering and Master of Engineering Degrees in Chemical Engineering from the Department of Chemical engineering, Nnamdi Azikiwe University, Awka. I am a staff and PhD student of the same department.
Okey-Onyesolu, Faith Chinenye I hail from Ekwulobia in Aguata Local Government Area of Anambra State. I obtained my B.Eng (Bachelor of Engineering) and M.Eng (Master of Engineering) in Chemical Engineering Department, Nnamdi Azikiwe University, Awka. I am currently running my Ph.D programme in Chemical Engineering from the same institution. Am presently working with Nnamdi Azikiwe University, Awka, Anambra state.